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Traffic Light and Sign Detection
Nancy Trinh

Abstract—This paper presents an implementation of a method that is capable of recognizing traffic lights and signs
using real world images. The method was tested on a large public dataset of European traffic signs: The German Traffic
Sign Detection Benchmark (GTSDB). The performance was comparable with that of current state-of-the-art
classification techniques, achieving AUCs of 95.42, 98.68, 99.21, and 81.93 on the danger, prohibitory, mandatory, and
traffic light classes, respectively. The traffic light AUC is not directly comparable to the state-of-the-art results due to my
use of the GTSDB and the state-of-the-art’s use of the LISA Traffic Light Dataset. This paper also provides an analysis
of the results and a discussion of potential improvements.
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Fig. 1. A typical image in the GTSDB dataset.

1 INTRODUCTION

IN recent years, traffic sign detection has
made considerable gains. Detection of Euro-

pean traffic signs has reached 98.52 to 100.00
AUC on the danger, prohibitory, and manda-
tory superclasses [1], [2], while detection of U.S.
traffic signs has reached 96.11 to 98.98 AUC on
the stop, no turn, and diamond superclasses,
and 89.86 AUC on the speed limit superclass
[2], [3]. This work focuses on detecting the
European danger, prohibitory, and mandatory
superclasses, and traffic lights. I trained and
tested using the GTSDB.

2 RELATED WORK

Prior to 2012, the field was split in model-
based and learning-based approaches. Recently,
learning-based methods have achieved much

more success [2]. [4] contains a survey of the
research on traffic sign detection up until 2012,
and [15] contains a survey of the research on
traffic light detection from 2009-2015, with one
exception from 2004.

2.1 European Traffic Signs

In the GTSDB competition, the top 3 teams
(out of 18) achieved near-perfect results us-
ing learning-based approaches. Team VISICS [1]
used an Integral Channel Features Classifier
based on [5]. Images were split into channels:
6 gradient histograms for different orientations,
1 for gradient magnitude, and the 3 channels of
the LUV color space. First-order features were
generated randomly by taking sums of rectan-
gular regions in a given channel. Higher-order
features were randomly generated weighted
sums of first-order features, and could span
multiple channels. They used a weighted linear
combination of boosted depth-2 decision trees
as their classifier. Team Litsi [6] used an SVM
to identify regions of interest based on color
classification, then performed shape matching
to filter the regions further. They then used
HOG as described in [7] to extract features,
and added two color histogram features (hue
and saturation histogram [8]. These features
were fed to a 4-class SVM to perform the
final classification step. Team wgy@HIT501 [9]
applied a small sliding window with LDA and
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a large sliding window with SVM to find re-
gions of interest, then performed non-maximal
suppression to suppress multiple ROIs in the
same region. They extracted the red pixels and
applied Hough transforms. Then they extracted
HOG features and fed the candidates to an SVM
to find danger and mandatory signs. For the
mandatory signs, HOG features were extracted
and fed to eight class-specific SVMs (one for
each sub-class of mandatory sign). If any of the
SVMs labeled the candidate as a positive, the
ROI is determined to be a positive. The authors
tweaked the HOG approach by incorporating
color information as follows: they calculated
the histograms for each color channel, then
normalized the histograms of all the color chan-
nels together, to ensure that the different color
channels share the same normalization factor.

2.2 U.S. Traffic Signs

In the realm of U.S. traffic sign detection, [2]
obtained state of the art results for the dia-
mond, stop, and no turn superclasses on the
LISA-TS dataset. Their approach involved us-
ing contrast-limited adaptive histogram equal-
ization (CLAHE) [10] to normalize colors in the
input images, then extracted channels as in ICF,
but instead of using Haar-like features, they
summed up blocks of pixels at various scales.
The features were then passed to a depth-2
boosted decision tree family. [3] achieved state-
of-the-art results on speed limit detection by
fine-tuning a pre-trained convolutional neural
network, then applying non-maximum sup-
pression and thresholding the detections by
their score.

2.3 Traffic Lights

Recent model-based approaches with decent
results on traffic light detection have uti-
lized white top-hat mophology to select areas
brighter than their surroundings and filtering
based on shape information and metrics such
as extent (how much of the selected area is
not empty) and dimension ratio [11] [12] [13].
[14] introduced the first successful application
of a state-of-the-art learning based detector for

Fig. 2. Preprocessed input image.

Fig. 3. Danger sign candidates.

trafficlight detection, and compared its perfor-
mance with that of the method in [11] and
[12]. The learning-based detector used is the
aggregate channel features (ACF) detector used
in [2]. The methods are tested on the public
LISA Traffic Light Database. The ACF detector
obtained 0.40 and 0.33 AUC on Day Sequences
1 and 2, respectively, while the model-based
detector obtained less than 0.0001 AUC on both.

3 METHODS

Like many of the approaches mentioned above,
I used color information to identify regions
of interest, filtered using shape characteristics,
extracted HOG to use as features, and used a
learning-based approach to perform the recog-
nition.

3.1 Color Enhancement
I pre-processed the image as specified in [16].
I enhanced the red pixels for danger and pro-
hibitory signs, and the blue pixels for manda-
tory signs. The equations used for red color
enhancement are shown below.
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fR(x) = max(0,
min(xR − xG, xR − xB)

xR + xG + xB

) (1)

And the grayscale image is obtained by

Red(x) =


fR, xR ≥ xG and xR ≥ xB

and xG/(xR − xG) ≤ TR

0 otherwise
(2)

TR was set to 6.0, which was the value
that produced the best result in [16]. I then
converted them to grayscale using the OpenCV
function [17]. Figure 2 shows an example of an
image after red color enhancement and conver-
sion to grayscale.

3.2 Blob Detection

I detected maximally stable external regions
(MSER) using the algorithm implemented in
OpenCV [18]. The algorithm identifies regions
in a grayscale image that maintain their shape
when the image is thresholded (binarized)
at several levels. MSERs are robust under
many environmental conditions (blurring, scale
changes, light changes, viewpoint change) and
the complexity of the background. The param-
eters for the MSER algorithm are chosen empir-
ically: I found that a minimum area of 100 and
a maximum area of 100000 worked well with
the default settings for the other parameters. I
drew a bounding rectangle around the MSERs
and cropped out the region of interest, then
filtered the candidates using aspect ratio (width
divided by height of the bounding box) and
extent (percent of bounding box filled by the
blob). The values for aspect ratio and extent
were empirically found. The aspect ratio min-
imums and maximums were set at (0.8, 1.2) for
the prohibitory, mandatory, and danger signs
(all of them should have a square bounding
box) and (0.2, 0.6) for traffic lights (should be
a long rectangle). The minimum extent is set to
0.4 for all the signs and traffic lights. Figure 3
shows the candidates at this stage for a sample
image, for the danger classifier.

3.3 Feature Extraction
HOG features capture the distribution of inten-
sity gradients in an image. My implementation
was a bit simpler than that described in [7]:
Each candidate was resized to (64,64), or (160,
64) for traffic lights. Then the image was di-
vided into 4x4 cells. A histogram of 16 gradient
directions was computed within each cell, and
the histograms are concatenated and output as
a vector. This vector was used as the feature
vector for the candidate.

3.4 Training
For each sign type (prohibitory, mandatory,
danger, and traffic lights), I first split the avail-
able images into positives and negatives. An
image was considered positive if it contained at
least one instance of the sign type. Then I ran-
domly sampled 80% of the positives and 80% of
the negatives to be in our training set. The rest
were reserved as a test set. I performed color
enhancement, blob detection using MSER, and
feature extraction on each image. For the posi-
tive images, if the intersection of the bounding
box of the candidate and the bounding box of
the actual location of any of the positives in
the image as specified in the ground truth file
provided with the full GTSDB data set is greater
than or equal to 50%, I marked that image as
a positive. This is slightly different from the
PASCAL measure [19]. The PASCAL measure
sets the threshold at strictly greater than 50%.

I wanted to train and test our traffic light
classifier on the LISA Traffic Light Dataset, but
was unable to obtain the dataset due to account
creation difficulties. Instead, I marked the loca-
tions of traffic signs in 100 of the GTSDB images
by hand, and used these to train and test with.

I trained a depth-3 family of 500 boosted
trees for each class of signs [20]. Gradient-
boosted trees train a number of ”weak” learners
– in this case, very small decision trees. After
each tree is trained, the training data is re-
weighted so that the examples that tree mis-
classified receives a greater weight, and the ex-
amples that the tree classified correctly receives
a smaller weight. In this way, each additional
tree focuses on getting better at classifying what
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TABLE 1
Number of positive signs, images with at least one positive in it, and negative images.

Dataset Statistics
Sign Type Positives Positive Images Negative Images

Danger 219 178 563
Prohibitory 557 382 359
Mandatory 163 142 599
Traffic Light 49 17 84

TABLE 2
Our Performance Statistics vs. State-of-the-art

AUC on Test Set
Sign Type This model’s AUC State-of-the-art

Danger 95.42 100.00
Prohibitory 98.68 99.86
Mandatory 99.21 98.52
Traffic Light 81.93 40.00

Fig. 4. False Negatives

the previous tree was not good at. The ensem-
ble also does not tend to over-fit as the number
of weak learners increases – this decreases the
amount of parameter tuning one has to do.
Given enough weak learners, good features,
and examples to work with, boosted trees tend
to perform very well, and have been used in
image classification tasks in [2] and [21].

4 EVALUATION

4.1 Comparison with state-of-the-art
Table 1 displays the number of each type of
sign in the GTSDB set, the number of images
with at least one positive in it, and the number
of images without the sign in question in it. The
traffic light counts only refer to the 100 images
that I hand-labeled. Of those 100 images, 17 had
traffic signs in them. There were 49 traffic signs
among those 17 images.

Table 2 displays the results on the hold-out
test set. Compared to the state-of-the-art results,
the performance is comparable for the dan-
ger, prohibitory, and mandatory classes (95.42,

Fig. 5. False Positives (danger, danger, prohibitory, traffic light)

Fig. 6. True Positives

98.68, 99.21 AUC). State-of-the-art results [2]
[1] are a bit higher for the danger and pro-
hibitory classes, but I achieved a score that
is slightly higher for the mandatory class. For
traffic lights, this model’s AUC is much higher
than the state-of-the-art AUC of 40.00 [14], but
these results should not be compared directly
because the test datasets are not the same. If
I could access the LISA Traffic Light Dataset
I will definitely incorporate it in the learning
process and use it to test the approach.

4.2 Adverse Lighting, Partial Occlusions,
and Difficult Weather Conditions
The method is generally robust but fails some-
times. Figure 5 shows examples of false
positives. The danger and prohibitory classi-
fiers identified some headlights, tail lights, red
leaves, and red traffic lights as positives. The
traffic light detector tended to mistake regions
of dark leaves or poles as traffic lights. The
method does not perform so well in these cases
due to the use of color enhancement for initial



5

Fig. 7. True Negatives

filtering. The red pixels in the lights and leaves
were enhanced and their shapes fit the aspect
ratio and extents the method was looking for.

Figure 4 shows some examples of false
negatives. The first sign was partially occluded,
possibly affecting its extent when the method
enhanced the red pixels and then looked for
blobs with a large extent – it may have looked
too ”empty” because of the darkness of the
branches. The second danger sign looks too
bright – the method might not have been able
to capture the shape or extent correctly on that
one as well. The third and fourth signs are very
much in shadow. This poses a challenge for the
classifier because it relies heavily on color en-
hancement to perform blob detection. The last
sign is an uncommon prohibitory sign in the
dataset. Most prohibitory signs have arrows on
them. The classifier was probably not exposed
to enough examples of no entry signs when
learning the prohibitory class.

Sometimes the classifiers performed very
well despite the darkness and the fog, as seen in
Figure 6. Enhancement of relevant colors was
useful in these cases because that approach re-
tains the signs as candidates when the method
filters by color. If the method did not filter by
color, it is likely that it have passed these over
as part of the background. The classifiers were
also robust enough to avoid classifying some
tricky images as positives.

Figure 7 shows some challenging parts of
the test images that were successfully passed
over by the classifiers. This provides evidence
that the classifier is sensitive to shape (rectan-
gular parking sign vs. circular mandatory sign)
and orientation (yield sign vs danger sign).

5 CONCLUDING REMARKS

For future research, I would like to try applying
local contrast-normalization as described in [7]

in our HOG feature extraction step to see if it
improves results. Another idea is to add the
ACF features used in [2] and [14]. I would
also like to label the rest of the traffic lights
in the GTSDB so the model could have more
examples to train and test with. For the same
reason, I hope to obtain access to the LISA
Traffic Light Dataset. Tracking also shows great
promise in improving detection performance
on videos [22], so I would like to apply it to
the LISA traffic lights and traffic sign datasets.
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